SDFAIR " chistera

Deliverable D5.2

Use cases evaluation report

Making Software FAIR: A machine-assisted
workflow for the research software
lifecycle

Project acronym: SoFAIR

Grant Agreement Number: CHIST-ERA-22-ORD-08

Deliverable information

Deliverable number and name D5.2 Use cases evaluation report

Due date M24

Actual delivery date

Work Package WP5

Lead Partner for deliverable Brno University of Technology

Authors Martin Docekal, Luca Foppiano, Patryk Hubar, Alain
Monteil, Tomasz Umerle

Reviewers David Pride, Laurent Romary

Approved by

Dissemination level Public

Version 0.9

D5.2 Use cases evaluation report

| Document revisionhistory | _ |

Issue Date
22/04/2025

25/11/2025

SoFAIR

Version
0.1

0.9

Final

Author
Martin
Docekal
Martin
Docekal, Luca
Foppiano,
Patryk
Hubar-Kotodzi
ejczyk, Alain
Monteil,
Tomasz
Umerle

Comments
Structure draft

Review ready

Public

D5.2 Use cases evaluation report Public

Table of Contents

1. Introduction S
2. Use Cases 6
2.1. Demonstrator 1: Linking research studies to software in life sciences for Europe
PMC 6
Problem statement 6
Methodology 7
Pipeline 7
Preprints 7
Software Mention Extraction 8
Conversion to Europe PMC format 9
Results 9
Filter Experiment 10
Filter Performance Verification 11
Comparison to Case Study in the Digital Humanities 11
Limitations and Future Work 11
Conclusion 11
2.2. Demonstrator 2: Validating extracted software mentions within an institutional
repository (INRIA) 12
Abbreviations 12
Introduction 12
Workflow 13
Introduction 13
Pipeline 13
HAL Synchronization 14
Document processing 14
Load and Notification 18
Validation from HAL 20
Results 22
Conclusions 24
Limitations 24
2.3. Case study in the digital humanities (IBL-PAN) 25

SoFAIR 3

D5.2 Use cases evaluation report Public

Executive summary

This report provides a description of use cases developed within Work Package 5 (WP5).
Two demonstrators and one case study is presented.

The first demonstrator (Linking research studies to software in life sciences for Europe PMC)
aims to create a pipeline for integrating TEl-annotated content, generated by SoFAIR
machine learning models, into the existing Europe PMC annotations infrastructure.

The second demonstrator (Validating extracted software mentions within an institutional
repository) focuses on creating a reliable and scalable end-to-end system for identifying,
processing, and validating software mentions in publications deposited in the HAL
publication repository.

Finally this document describes the case study in the digital humanities investigating the

potential of automated software-mention detection for analyzing digital transformation
processes in the humanities by examining software-usage.

SoFAIR 4

D5.2 Use cases evaluation report Public

1. Introduction

This document focuses on the evaluation and deployment of the tools and workflows
developed by the SoFAIR project. The primary objectives were to assess the effectiveness
and scalability of the developed pipelines for extracting and processing software mentions
from scholarly literature in real-world contexts, and to provide feedback for improving both
the tools and the overall SoFAIR workflow.

Two demonstrators and one case study are presented. The demonstrators test the outputs
of the core machine learning and annotation tools (Softcite, Grobid, and candidate filter)
developed in earlier stages. One demonstrator additionally serves as a proof of concept for
the end-to-end workflow, involving authors as validators.

The case study examines digital transformation processes in the humanities, utilizing tools
developed during the SoFAIR project.

All case studies provide a deep description, followed by a quantitative evaluation of the
effort, and conclude with recommendations and a description of potential limitations.

SoFAIR 5

D5.2 Use cases evaluation report Public

2. Use Cases

2.1. Demonstrator 1: Linking research studies to software in
life sciences for Europe PMC

Europe PMC is a trusted world leading biomedical literature resource with a unique value
offer; combining the functionality of a search engine with full text repository, and enabling
context-aware information retrieval. Users can traverse abstracts and full text from PubMed,
PMC, preprint servers, and other sources on one comprehensive platform. It connects
publications and data, extracting evidence to uncover meaningful relationships between
concepts. Metadata is enriched with persistent identifiers (PIDs), uses community standards,
and is available in open formats. Data can be accessed through open APls and data dumps
for integrations, application development, artificial intelligence (Al) model training, and meta
analysis studies.

Europe PMC contains a corpus of approximately 70,000 full text preprints, which have been
converted from PDF to XML as a result of funding from the Europe PMC funders. This
corpus is composed of two subsets - the COVID-19 corpus of approximately 50,000
preprints (funded by Wellcome, SNSF and the MRC) and the remainder are identified as
those funded by Europe PMC funders, which is an ongoing funded project.

The Europe PMC platform provides an annotations submission platform which enables
outputs from other projects to deposit grounded links of associated outputs to the literature.

As a demonstrator use case the full text preprint corpus is an ideal use case to enhance the
utility and discoverability of preprints alongside associated open science outputs in the form
of research software.

Problem statement

Europe PMC seeks to evaluate a workflow for integrating TEI-annotated content, obtained
from machine learning models developed as part of the SoFAIR project, into its existing
annotations infrastructure.

To support this evaluation, a one-off proof of concept is required to transform the TEI
annotations into the Europe PMC format and deliver them to the Europe PMC annotations
platform. Once delivered, Europe PMC must be able to ingest these annotations and expose
them through its public API.

The original project proposal included the use of the SciLite web application to display the
outputs to the front end website user. However, this component does not support
annotations that are not grounded using Identifiers.org and in future these annotations will
be made available via the article page links section. This will require significant UX design
efforts and will be implemented beyond the end of this current project.

SoFAIR 6

https://europepmc.org/Annotations#provide-annotations
http://identifiers.org

D5.2 Use cases evaluation report Public

Methodology

Using existing tools developed during the SoFAIR project, we developed a pipeline for
converting TEl files into a format compatible with Europe PMC. For our proof of concept, we
used the corpus described in the introductory section of this use case.

Our work was not limited to the conversion process itself. We conducted a detailed analysis
of the constraints encountered and formulated recommendations for future development. We
concluded with a quantitative evaluation of the software mentions that were successfully
transformed into the Europe PMC format.

Pipeline

This section outlines the complete pipeline developed for this use case. The figure below
provides a visual summary of all processing stages, which are explained in detail in the
subsequent text. The full implementation of the pipeline is available in the project’s public
GitHub repository (https://github.com/SoFairOA/UseCaseEuropePMC).

. Software
Preprints mention Upload
extraction
! . |
Pipeline
1 1 |
1 1 |
Separation to To TEI Conversion to
individual conversion Europe PCM
XMLs annotation

format

Figure 1: Overview of the pipeline for Europe PMC

Preprints

To demonstrate the pipeline, we used the Europe PMC full text preprint corpus introduced
earlier in this use case. In our GitHub repository, we provide a download script with URLs
that exactly identify our data sources. The script is available at
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download and_convert/downl
oad.sh.

As noted previously, the corpus primarily consists of COVID-19-related publications. To
provide more detailed information, we include the following pie chart, which offers an
overview of the specific sources represented in the dataset.

SoFAIR 7

https://github.com/SoFairOA/UseCaseEuropePMC
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/download.sh
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/download.sh

D5.2 Use cases evaluation report Public

Sources

psyarxiv

2,1%

ssrn

2,5%

preprints (basel)
4.0%

arxiv

6,1%

res sq
30,6%

biorxiv
23,9%

medrxiv
29,5%

Figure 2: Europe PMC corpus sources

Our pipeline processed 67,809 papers as input. All of these papers are provided in JATS
XML format, which we converted into TEI— the format required by the Softcite tool used for
extracting software mentions.

The first step was to split the source XML files into individual documents, as the original data
contained multiple papers within a single XML file. This task is handled by a Python script
available at:

https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/separa
te.py

After separating the documents, we ran the Pub2TEI converter
(https://github.com/kermitt2/Pub2TEl) to generate the corresponding TEl files.

Software Mention Extraction

In this step, we processed the TEI documents produced previously using Softcite with the
model trained during the SoFAIR project. To do this, we used the Softcite Python client
(https://github.com/softcite/software _mentions _client), which sends requests to the Softcite
server packaged in the Docker image: Ifoppiano/software-mentions:0.8.2-sofair_2.

An example shell script demonstrating how to run the extraction workflow is provided in our
GitHub repository:
https://github.com/SoFair EuropePMC/blob/main/extr mentions.sh

SoFAIR 8

https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/separate.py
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/separate.py
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/download_and_convert/separate.py
https://github.com/kermitt2/Pub2TEI
https://github.com/softcite/software_mentions_client
https://github.com/SoFairOA/UseCaseEuropePMC/blob/main/extract_mentions.sh

D5.2 Use cases evaluation report Public

The extraction process resulted in 1,099,332 software mentions (counting all mentions, not
unique software names). Our analysis shows that 52,684 publications (~78%) contained at
least one software mention. Additional details are provided in the Results section.

Conversion to Europe PMC format

We needed to convert the extracted mentions because Softcite does not provide results in a
format compatible with the Europe PMC annotation specification, as described in the official
documentation (https://europepmc.org/AnnotationsSubmission#data-format).

For this use case, we utilized the following fields from the Europe PMC annotation format:

src: Source of the article (for our case PPR as we use preprints corpora)
id: Identifier of the article in the context of the src field provided
provider: Name of the provider (SoFAIR)
anns: List of annotations
e type: Annotation type (we use software_mentions)
exact: Text of the tagged entity (we use raw form of software mention)
prefix: Portion of the sentence that appears before the software mention
postfix: Portion of the sentence that appears after the software mention
tags: List of the entities tagged by this annotation (in our case it is list with
one element)
e name: Name of the tagged entity (we use again the raw form of
software mention)
e uri: URI to the ID or the Accession number the entity is linked to (we
use the extracted URL of the associated software mention)

The uri field, which is mandatory, posed the greatest limitation for our use case, as not every
software mention has an associated URL or other identifier. Consequently, we only include
mentions that have a corresponding URL. Further details and quantitative evaluation are
provided in the Results section.

Results

In this section, we present a quantitative evaluation of our use case.

From the Europe PMC corpus, we extracted 1,099,332 software mentions (counting all
mentions, not unique software names). These mentions originate from 52,684 publications
(~78%), while the remaining publications did not contain any software mentions.

During the conversion process, we identified a key limitation: the mandatory uri field. This
requirement is restrictive because Softcite cannot provide a URI/URL for every software
mention.

We also assessed the quality of the extracted URLs by verifying whether each one is a valid
HTTP/HTTPS link.

Our findings are summarized in the following table:

SoFAIR 9

D5.2 Use cases evaluation report Public

S number of 5 number of documents 5
invalid url ok : % 2 . %
mentions with at least one mention

TRUE TRUE 1099332 100.00% 52684 77.69%
TRUE FALSE 1094978 99.60% 52648 77.64%
FALSE TRUE 16626 1.51% 2384 3.52%
FALSE FALSE 12272 1.12% 1694 2.50%

Table 1: Statistics of extracted software mentions

The table shows that there are 12,272 suitable software mentions (with associated valid
URLS) in the Europe PMC format. These mentions appear in 1,694 documents, which
represents only 2.5% of the total corpus.

To address this limitation, we conducted an experiment and developed a tool capable of
extracting URLs from the immediate context surrounding a software mention. The tool links a
URL to a software mention only when the URL contains a surface form of that mention as a
case-insensitive substring.

We manually evaluated the precision of the URL extraction tool using a random sample of
50 software mentions that the tool had enriched with URLs. We found that 49 of the URLs
were correct. Based on this high precision, we decided to incorporate the URL extraction tool
in the post-processing step, as it substantially increases the number of software mentions
suitable for Europe PMC, as shown in the following table.

S number of 5 number of documents 5
invalid url ok : % . 5 %
mentions with at least one mention

TRUE TRUE 1099332 100.00% 52684 77.69%
TRUE FALSE 1094944 99.60% 52648 77.64%
FALSE TRUE 45521 4.14% 10247 15.11%
FALSE FALSE 37014 3.37% 8616 12.71%

Table 2: Statistics of extracted software mentions

Filter Experiment

Table 1 demonstrates that a high proportion of publications in the corpus contains at least
one software mention.

We conducted an experiment using our fast filtering tool (available at:

https://github.com/SoFairOA/filter). This filter is designed to quickly identify and retain

candidate documents that have a high probability of containing software mentions, thereby
filtering out those that likely do not.

SoFAIR 10

https://github.com/SoFairOA/filter
https://github.com/SoFairOA/filter

D5.2 Use cases evaluation report Public

The filter is highly suitable for this experiment, having achieved a high recall (91%) and
precision (86%) on testing data.

Filter Performance Verification

To verify that the number of publications passing our filter is consistent with the number of
mentions extracted by Softcite on this same corpus, we first applied our filter to the existing
corpus. It selected 51,236 candidate documents (75.55%). This proportion is close to the
number of documents (77.69%) identified by Softcite, confirming the filter's utility as an
effective preprocessing step.

Comparison to Case Study in the Digital Humanities

Comparing results to results from the case study in the digital humanities, we observe
that the preprint corpus contains a significantly greater proportion of documents with
software mentions (75.55%) than in range for DH (30—60%) and even greater than TLL
(10-15%).

Limitations and Future Work

The original intention was to add the mined software citations directly to the ScilLite.
However, several constraints made this challenging.

First, the SciLite panel only supports links resolved through Identifiers.org, while our
extracted mentions currently provide only general URLs. Future work should focus on
disambiguation, enabling the use of supported identifiers.

Second, Scilite requires the exact in-text location of each annotation within the article.
Because the article undergoes multiple conversion steps, obtaining these precise positions
is cumbersome. Although implementing this would be technically possible, an alternative
approach, highlighting the mined software directly on the main article page, was proposed.
This solution is expected to have greater impact and is technically less complex.

Conclusion

We developed a pipeline to convert Softcite annotations derived from Europe PMC data into
the Europe PMC format. We quantitatively evaluated the approach and documented its
limitations. In addition, we analysed documents containing software mentions (focusing
primarily on the COVID-19 publication corpus) and compared the results with those from
case study in the digital humanities. Additionally, we verified the usability of the candidate
documents filter.

We recommend that infrastructure providers avoid imposing requirements that make the
disambiguation of software mentions mandatory through the use of specific identifiers. We
believe that users can still benefit from these annotations even when such disambiguation is
not enforced.

SoFAIR 11

D5.2 Use cases evaluation report Public

2.2. Demonstrator 2: Validating extracted software mentions
within an institutional repository (INRIA)

Abbreviations

HAL: Hyper Articles en Ligne, the French national publication repository

CCSD: Centre pour la Communication Scientifique Directe, the organisation that develops
and maintains HAL

SWH: Software Heritage

SWHID: Software Hash Identifier (ISO/IEC 18670:2025")

SoftCite vs Software mentions: SoftCite is the project initiated by James Howison and
Patrice Lopez to extract software mentions from scientific articles, while Software mentions
is the piece of software that extracts such information from a scientific paper. Those two
terms are often used interchangeably. In this document we always refer to the software used
for extracting mentions from a document.

Introduction

HAL is both a software platform and a unique multidisciplinary open repository. It hosts more
than 150 institutional archives from universities and research organizations within a single
database and includes specific thematic or documentary spaces such as HAL-SHS for the
Human and Social Sciences, HAL Theses for doctoral dissertations, and MediHAL for
visual and audio materials.

Designed for researchers and their institutions, HAL covers all scientific disciplines and
accepts a wide range of research outputs — including peer-reviewed articles, conference
papers, theses, preprints. It also provides an environment for signalling research software
productions in relation to SWH.

Initiated in 2001 by physicist Franck Laloé, HAL is developed by the Center for Direct
Scientific Communication (CCSD), a support and research unit operating under the
supervision of three public research organizations: the National Center for Scientific
Research (CNRS), INRIA, and INRAE.

HAL is supported by France’s national Plans for Open Science and forms part of HAL+, a
certified research infrastructure recognized by the Ministry of Higher Education and
Research. It plays a key role in the country’s open access institutional policies (see also
HAL'’s position in the French Open Science Monitor).

HAL is CoreTrustSeal certified and listed in major international registries, including:

e the Directory of Open Access Repositories (OpenDOAR),

' ISO/IEC 18670:2025 Information technology — SoftWare Hash IDentifier (SWHID) Specification
V1.2

SoFAIR 12

D5.2 Use cases evaluation report Public

e the Directory of Open Access Preprint Repositories (DOAPR), and
e the Registry of Research Data Repositories (re3data).

For more information, see the political declaration “HAL, an open archive built in common to
share and disseminate scientific knowledge” (June 2022)32.

The repository also serves researchers affiliated with foreign academic institutions, whether
public or private.

Workflow

Introduction

The workflow is implemented using the shared, large-scale infrastructure Grid5000°.
Grid5000 is a large-scale testbed for research in computer science, focusing on parallel,
distributed, cloud, HPC, Big Data, and Al computing.

It offers 15,000 cores and 800 compute nodes with a variety of hardware options, including
GPUs, SSDs, NVMe storage, and high-speed networks. Researchers can deploy custom
software environments and isolate experiments at the network level using bare-metal
deployment. The platform provides monitoring of network activity and power consumption to
support experiment analysis. Designed to encourage open and reproducible research,
Grid5000 tracks all software and hardware changes and is supported by a community of
more than 500 users and a dedicated technical team.

Grid5000 is supported by Inria and other organisations including CNRS, RENATER and
several Universities.

Pipeline

The pipeline is composed of several stages (Figure 3):

- HAL synchronization: nightly scheduled job that looks up all the new publications in
HAL and downloads the related PDF documents

- Document processing: new PDF documents are processed by Grobid and SoftCite
using two asynchronous pipelines

- Load and notify: the software mentions extracted are loaded in the software
mention API (or COAR Notify inbox, in Figure 3) application which triggers COAR
notification toward HAL and SWH.

- Validation from HAL: The software mentions are visualised in the HAL interface,
and the authors are asked to validate them.

- Post-validation from HAL: After the data is validated, the software is registered into
the HAL database and a COAR notification is sent back to the software mention API
application to be registered.

All these stages are running asynchronously, their dependency is only data-related, meaning
that are scheduled at a certain time on the Grid5000 infrastructure but each of them may run
when the requested resources are available.

2 https://www.ccsd.cnrs.fr/iwp-content/uploads/2023/05/DeclarationPolitiqueEN_VF.pdf
3 hitps://www.arid5000.fr

SoFAIR 13

https://www.grid5000.fr
https://www.ccsd.cnrs.fr/wp-content/uploads/2023/05/DeclarationPolitiqueEN_VF.pdf

D5.2 Use cases evaluation report Public

For example the Grobid processing uses 10 CPU nodes, while Softcite requires GPU nodes,
so the waiting time for GPU may be larger.

;/ HAL synchronization \\
l’ ‘l
[I
I 1
1 !
1
l\ v Distributed infrastructure
\ Grid5000
‘\ Grobid \
\\ \
/ I
!]
/ XML TEI)
i v /
! / Authors/
\ . / Administrators
Y SoftCite ,/ Accept/Reject
\\
h ~ - - "‘
T PN HAL o™
N ke . I User validation »| Portal
v inbox
COAR Notify COAR
inbox Notifications
SWH
inbox

Figure 3: Overview of the pipeline

HAL Synchronization

The synchronization of the HAL copy is automated on the Grid5000 platform to ensure a
daily update of a local mirror of HAL records and associated files.

Each day, a script queries the HAL API to retrieve the list of identifiers (HAL identifier)
indexed during the past 24 hours. These data are compared with those from the previous
day to identify deleted records (hallDs that have disappeared), which are then removed
along with their corresponding files from local directories.

At the same time, new and modified records are downloaded in XML-TEI format, together
with their associated PDF files, except when the files are under “embargo” (not yet publicly
available). Files under embargo are tracked in a dedicated list until their release date, at
which point they are automatically downloaded. This two-part process ensures that the local
HAL copy remains consistently up to date, reliable, and complete.

Document processing

The document processing pipeline is described in detail in Figure 4. The pipeline can be
divided into three separate parts:

SoFAIR 14

D5.2 Use cases evaluation report Public

- Grobid processing
- Software mentions processing
- Load and notification

Both Grobid processing and SoftCite processing are structured in the same way, the
differences are the type of the input and output files, and the resources requested.
Everything else is implemented in the same way.

Using the same structure it is possible to add easily any further processing, e.g. Dataset
extraction, quantities extractions, etc.

Staging input Staging output

|
¥

(2) copy
LY

Documents Load new Copy documents i XML TEI collected
Synchn;:xz-ed from | documents > o staging area »| Grobid Postprocess > " Gocuments

[y

status: STAGE_IN !
status: PROCESSED

Document processing g HAL

stateus: NEW Grobid DB < Async Access

I‘

Software VIZ interface

COAR Notify

Grid 5000 A
shared on-demand

resources / COAR Notify * SWH
/ \ Load in COAR notifier
[y
/ \ 7]

Staging input Staging output “

‘I

AN

() copy
A4 / LN Y
XML TEI Load new Copy documents

i »| JSON documents \
processed by — | documents "1 in'staging area | SoftCite Postprocess Y
Grobid _
N \ Software mentions Database
) (Arango DB)
status: STAGE_IN status: PROCESSED

Document processing
N Softci

stateus: NEW

=
o
T
o
@

Y

Figure 4: Document processing and notification

The Grobid and Softcite processing makes use of a “Staging area”, a storage where the files
are copied (to input) and retrieved (from output) after processing to avoid working directly on
the original data. Any error or disruption to the staging area is reset at each run.

The first step is collecting the list of files that are provided in the entry directory (for

Grobid will be the output of the HAL Synchronization, for SoftCite will be the output of the
Grobid processing).

SoFAIR 15

D5.2 Use cases evaluation report Public

Staging input Staging output
() copy

/ N \
Documents Load new Copy documents i - XML TEI collected
synchronized from | gocuments " instagingarea | > Grobid Postprocess |——] documents
HAL

A \
status: STAGE_IN ‘ ‘
status: PROCESSED

. Document processing //
stateus: NE&V, Grobid DB «——
T

v
Grid 5000

shared on-demand
resources

Figure 5: Document processing workflow for Grobid and SoftCite (with minimal variations)

The list is then loaded into a local database which collects only the paths that are not already
present (new files). The database is used to keep track of the location and status of each
document.

The statuses explain the different step the document is within the processing:

- NEW: new documents

- STAGE_IN: the document was added to the input staging area

- PROCESSED: the document output was collected from the output staging area

- ERROR: the document was not processed correctly (the error cause will also be
collected, depending on the processor, see below)

- NOTIFIED_OK: the COAR notify was successful (only valid for the software mentions
database)

- NOTIFIED_FAIL: the COAR notify was unsuccessful (only valid for the software
mentions database)

- CLEANUP: the PDF was removed (only valid for the Grobid database)

The second step is to select, chunk and allocate a certain number of documents to the
staging area, the number of chunks depends on the number of nodes that are used for
processing. This number is currently fixed and we plan to make it dynamic based on the
number of documents that needs to be processed. Once the documents are allocated their
status changes from “NEW” to “STAGE_IN".

Furthermore the processing is launched, both Softcite and Grobid schedule N nodes and
allocate each node to a chunk of the staging area, for example we managed to run 10000
documents to 10 nodes processing 100000 PDF documents in about 8 hours. This
modulation of resources reduces dramatically the carbon footprint and the costs using
dedicated infrastructures.

Finally, after processing, the data is postprocessed, in particular three control are made:
- we verify that the corresponding output files are created
- we collect errors messages (e.g. Grobid produces text files containing the errors) and
store them in the database
- we copy the files outside of the staging area

SoFAIR 16

D5.2 Use cases evaluation report

If all these three steps are successful, we update the database changing the status from

STAGE_IN to PROCESSED, otherwise to ERROR.

Public

NOTE: documents that lead to errors are not reprocessed automatically, however we have in
place a manual step that “recycles” errored documents. This is currently manual because we

want to be in control when to trigger, for example after an update of Grobid or Softcite.

We produce regular statistics to monitor the processes, note that Grobid and Softcite provide
different error information, so the statistics are slightly different. For example Grobid provide

ore information about the type of error which is often a characteristic of the PDF (e.g. when
the pdf is too big “TOO_MANY_BLOCKS?”, or does not contains any text “NO_BLOCK™):

"total": 260680,
"status_counts": {
"cleanup": 248857,
"error": 3542,
"new": 88,
"processed": 548,
"staged in": 7645
b

"missing files": O,

"invalid entries": O,

"error analysis": {
"total errors": O,

"error code counts":
"ANY": 1834,
"BAD INPUT DATA":
"NO BLOCKS": 1110,
"TIMEOUT": 28,

"UNKNOWN": 36

Grobid processor statistics

"TOO MANY TOKENS":

{

349,

185,

"total": 249405,
"status counts": {
"error": 5,
"notified FAIL": 63,
"notified OK": 174,
"processed": 249163
by

"missing files": 0,

"invalid entries": 0,

"error analysis": {
"total errors": 5,

"error code counts":

"ANY": 5

Software mentions statistics

Figure 6: Example of collected statistics in the local databases for Software mentions and

Grobid processing

4 See https://grobid.readthedocs.io/en/latest/Grobid-service/#errors-handling

SoFAIR

17

https://grobid.readthedocs.io/en/latest/Grobid-service/#errors-handling

D5.2 Use cases evaluation report Public

Load and Notification

In this stage, we collect all the documents with status PROCESSED and we send them to
the COAR notify inbox. This is a new web application that collects the documents and
software mentions in a graph database (ArangoDB) and sends the notification to HAL
(Figure 7). Within the same work package, we have also integrated our pipeline to the COAR
notification of Software Heritage (SWH) (Figure 8). Software Heritage represents a strategic
partner to monitor software because of the vast variety of information that they have in
storage.

No notifications are sent when the loaded document does not contain any software
mentions. Beside the mandatory information described by the COAR standard (inbox,
service, etc.) our notifications provide the software name, and the contexts, which represents
all the snippets from the document that contains the mention.

"@Qcontext": [
"https://www.w3.0rg/ns/activitystreams",
"https://purl.org/coar/notify"
I
"id": "urn:uuid:c53603b5-1803-494d-965d-956ec87d41e2",
"type": [
"Offer",
"coar-notify:ReviewAction"

1,

"actor": {

"id": "https://datalake.inria.fr",

"type": "Service",

"name": "Inria DataLake"
}y
"origin": {

"id": "https://datalake.inria.fr",

"type": "Service",

"inbox": "https://prod-datadcis.inria.fr/coar/inbox"
by
"target": {

"id": "https://inria.hal.science",

"type": "Service",

"inbox": "https://inbox-preprod.archives-ouvertes.fr/"
by
"object": {

"id": "hal-04971161v1",

"jetf:cite-as": null,

"sorg:citation": {

"@Qcontext": "https://doi.org/10.5063/schema/codemeta-2.0",
"type": "SoftwareSourceCode",

"name": "ClipCap",
"codeRepository": null,
"referencePublication": null
s
"mentionType": “software”,
"mentionContext": [“We used ClipCap to make the..”, “The ClipCap software is
available on Github”]

}

Figure 7: Example of the body of the notification sent to HAL

SoFAIR 18

D5.2 Use cases evaluation report Public

"@Qcontext": [
"https://www.w3.0rg/ns/activitystreams",
"https://purl.org/coar/notify"

1,

"actor": {

"id": "https://datalake.inria.fr",
"type": "Service",
"name": "Inria DataLake"
by
"context": {
"id": "hal-01923108",
"sorg:name": null,
"sorg:author": {
"Q@type": "Person",
"givenName": null,
"email": null
by
"ietf:cite-as": "https://doi.org/XXX/YYY",
"jetf:item": {
"id": "hal-01923108",
"mediaType": "application/pdf",
"type": [
"Object",
"sorg:ScholarlyArticle"
]
s
"type": [
"Page",
"sorg:AboutPage"
]
}y
"id": "urn:uuid:c35982da-7021-4985-a31b-895980691ec6",

"object": {
"as:subject": "hal-01923108",
"as:relationship": "https://w3id.org/codemeta/3.0#citation",
"as:object": null,
"as:name": "FASST",
"id": "urn:uuid:a27d40bb-4e41-46b6-bbb3-98fd7dcb210b",
"type": "Relationship"
s
"origin": {
"id": "https://datalake.inria.fr",
"type": "Service",
"inbox": "https://prod-datadcis-api.inria.fr/coar/inbox"
by
"target": {
"id": "https://archive.softwareheritage.org",
"type": "Service",
"inbox": "https://inbox.staging.swh.network/"
by
"type": [

"Announce",
"coar-notify:RelationshipAction"

Figure 8: Example of the body of the notification sent to Software Heritage

SoFAIR 19

D5.2 Use cases evaluation report Public

The notifications are sent and managed in a synchronous way, recording information about
successful and failed notifications. In the future, we can reprocess documents for which the
notifications did not work.

Validation from HAL

On the other end of our notification pipeline there is the inbox of HAL (and SWH). HAL
notifications are processed through their inbox, and the detected software mentions are
displayed on the article's page within the HAL portal (Figure 9).

However, due to HAL's internal regulations, software mentions cannot be displayed publicly
without the explicit authorisation from the authors. As a result, they are visible only to
authors or deposit administrators once they are logged in.

Figure 10 provides a more detailed view of the software mentions, including the textual
contexts in which the software appears and an interface element that allows users to accept
or reject each mention. When an author performs one of these actions, a notification is sent
back to the Datalake inbox to update the status of the software mentions, accordingly.

The validation process is not restricted to the primary authors. Any individual who has
ownership of the deposit—such as co-authors, administrators, or librarians—can validate
software mentions, ensuring flexibility and shared responsibility throughout the workflow.

E

HEONANONACN

Figure 9: Example of the body of the notification sent to Software Heritage

SoFAIR 20

D5.2 Use cases evaluation report Public

Sotware Code

. Software mention Actions
name Repository

m Contexte:

« Several conclusions can be drawn regarding the implementation of the logical architecture we envision- (i) it
cannot be implemented using a single technology since none currently ensures all the required properties,
TrustVisor and therefore has to combine several elements; (i) the Core relying on isolation, confidentiality and v 4
attestation, can be run on a secure element or on 5GX, or be implemented by a combination of execution
environments (e.g, pioneer works like TrustVisor [38] propose a secure hypervisor based on combining a
secure element with an hypervisor to provide confidentiality and attestation); and (iii) the data tasks needing
peripherals isolation (i.e, decision-making) can only be run on TrustZone or a hypervisor/VMM

m Contexte:

« Cozy), expert users can opt for a self-hosted instance, which is close to the home cloud approach considered in
Section 2.2.

* In CozyCloud, the apps interact with the Cozy data system to access documents stored in a CouchDB engine,
where each document is stored in a JSON format with an associated 'doctype’ family (e.g, bank, photos, bills,

etc).
» The list of existing doctypes are defined and published by Cozy such that Cozy app developers can conform to a
Cozy commen scheme and easily identify the documents of interest (e.g,, a finance app may be granted access to all
the 'bank’ and 'bills' doctypes and cross-exploit them to link each bill to a corresponding bank transaction
record).

The list of existing doctypes are defined and published by Cozy such that Cozy app developers can conform to a
common scheme and easily identify the documents of interest (e.g, a finance app may be granted access to all
the 'bank’ and 'bills' doctypes and cross-exploit them to link each bill to a corresponding bank transaction
record).

For instance, Meeco has chosen a cloud server in Australia to comply with the strict local privacy regulations,
while Cozy can be deployed using any cloud service provider.

Figure 10: Example of the body of the notification sent to Software Heritage

SoFAIR 21

D5.2 Use cases evaluation report Public

The loaded documents and their software mentions can be monitored thanks to the
SOFTware-Viz application (Figure 11), which provides a dashboard overview of the software
notifications: documents loaded (extracted by the pipeline), software loaded, notification
accepted in the HAL portal, and notification rejected.

SOFTWARE SOFTware-Viz
==

Informations Dataset Process
OF pashboard
=g
g Documents: @ Software: @ _
Q_ Authors § 100 527 182
Disambiguate 4
2 o _
2 OoP R AR RS Software mentiorgD Authors: ®
Q_ software i AR 1308 3631 DB of PDF
The process begins with a Database of PDF files. These
Q_ search PDFs are scholarly PDFs that needs to be extracted
2 Mentions received (ast 30 days) and processed.
£ poc] Structures: @ References: ®
Z 200 1756 37
3 100 -
5 L]]
11

GitHub Links: <
10

¢

GROBID
The PDFs are sent to GROBID, a tool used to extract
structured data (like bibliographic information) from
scholarly PDFs. GROBID processes the PDFs and
outputs XML files. This is a crucial step in extracting
machine-readable information from the documents.

2 [0 Mentions rejected (ast 30 days) unl
g1 [Tt

3 Report a buc

Number of Mentions

Figure 11: Overview of the SOFTware-Viz interface

Results

The workflow for large scale data processing based on the Grid5000 shared infrastructure
was validated in two phases: a) by processing a large quantity of PDF documents (1.6
million) documents from the HAL repository, and then by scheduling the pipeline every day
to process only new documents.

The first phase was performed in over three weeks: the Grobid processing took around 1
week and the extraction of software took 2 weeks. This was in line with initial expectation
considering that Grobid is extremely fast as compared to any specialised processor.

In this exercise the team was able to optimize the deployment and to tune each processor
accordingly with the available resources (e.g. Memory, CPUs, GPUs, type of GPUs).

In the second phase, we tested scheduling the processing regularly every day, over a few
months and processing around 250 thousand documents end to end.

Figure 12 illustrates the number of documents processed daily by Grobid and
software-mentions. Important to notice that the Software-mention process started to work
about one week later. Figure 13, shows that the process was designed to naturally catch up
the delayed week.

SoFAIR 22

D5.2 Use cases evaluation report Public

B Grobid [Software-mentions

50000

40000

30000

20000

10000

0 | | 1 I | [| | P |

K O N =+ O I~ 0 O O - N M I © O - N O ™M Q0 O O M~ o
- N N NN NN NN QO O Q0 QO QO - o« - - 0O O O v« v v
o O aQ O O O O O O o o o o O O o o O - -~ o -
o o o o o o o o o — — — ~— ~— — — — — — ~— ~— — — —
v w0 0 0 wu w wWw w w 0 w0 w w wu w 0 w0 w w v w0 w "o o]
N N [I I 6 I S A 6 I & I NN NN N NN NN NN NN NN
o o o O O o O O O o O O o O O o O O O o o O o O
N N N AN AN NN NN N NN N NN N N N N N NN N N

Figure 12: Daily process, we limit to 10000 documents per day. The software-mention
process started about a week later. *The days with more than 10000 documents were the
days the team was testing changes manually

== Grobid accumulation == Softcite accumulation

300000

200000

100000

20250918
20250920
20250922
20250924
20250925
20250927
20250928
20250929
20250930
20251001
20251002
20251003
20251004
20251006
20251010
20251011
20251012
20251013
20251103
20251108
20251109
20251110
20251117
20251118

Figure 13: Accumulated documents during the test process. Notice that the
software-mention process was designed with a capacity allowing it to catch up after being
delayed.

SoFAIR 23

D5.2 Use cases evaluation report Public

Conclusions

The workflow presented here provides a reliable and scalable end-to-end system for
identifying, processing, and validating software mentions in publications deposited in HAL.
Leveraging Grid5000 for large-scale computation, Grobid and SoftCite for document
analysis, and COAR Notify for interoperable communication, the pipeline ensures that
software referenced in scholarly outputs is systematically captured and routed to the HAL
portal. Author involvement through the HAL validation interface reinforces accuracy and
supports a transparent, accountable process. As it evolves, the pipeline will continue to
contribute to a more complete and sustainable ecosystem for recognising research software
as a key component of open and reproducible science.

Limitations

The implementation described in this document still presents several limitations.

First, there is currently no direct way to correct extracted information—such as software
names or context snippets—within the HAL portal, beyond simply accepting or rejecting the
mentions. This limitation raises several questions about user engagement, as authors are
generally not very active in maintaining metadata in HAL and may be reluctant to edit
information manually. For this reason, an interface offering only Accept/Reject actions is
likely to be the most effective option, at least during the first few months following the
production release, while we gather feedback and monitor usage patterns.

A second limitation concerns notifications for older publications. At present, authors and
administrators will not be alerted about software mentions extracted from older records. This
issue requires careful consideration in order to avoid overwhelming users with excessive
notifications. One possible compromise is to process a limited historical window—for
example, articles published in 2024—to expand coverage while maintaining a reasonable
notification load.

SoFAIR 24

D5.2 Use cases evaluation report Public

2.3. Case study in the digital humanities (IBL-PAN)

Overview

This use case investigates the potential of automated software-mention detection to analyse
and interpret digital transformation processes in the humanities. Building on
machine-learning tools integrated into GROBID and Softcite, the study introduces a
long-term analysis of software-usage signals in humanities scholarship. The core assumption
is that software mentions in scholarly publications constitute measurable traces of digital
transformation. By examining journals representing traditional linguistics and literary studies
(TLL) and digital humanities (DH), the study contributes to a broader understanding of
methodological change in SSH fields. Unlike earlier research focused mainly on model
development or dataset creation, this use case applies automated detection to a scientometric
investigation of disciplinary evolution and assesses how the produced outputs may be reused

by SSH infrastructures such as GoTriple and the SSH Open Marketplace.

In this report we present the key elements of the study which has been detailed in a scientific

publication submitted to the peer review journal.

Description of workflow

The workflow began with the construction of a corpus. Journals published continuously for at
least 20 years were selected through DOAJ. Two categories of journals were analysed: (1)
traditional linguistics and literary studies, representing seven titles and more than three
thousand full texts, and (2) digital humanities, represented by articles from DHQ and
Code4lib, together with a large set of abstracts derived from a DH journal list. Publications
were limited to English.

All texts were processed using the Softcite tool, which extracts software mentions through a
machine-learning NER pipeline integrated with GROBID. The study adopted a “one mention
per document” rule: the presence of a single software instance was sufficient to classify the
publication as software-using. This prioritised large-scale scientometric trends over
exhaustive linguistic annotation.

Outputs were manually validated and classified as true positives and false positives. This
enabled a detailed assessment of detection performance across subdisciplines of the
humanities. Mention rates were computed, allowing diachronic comparisons between TLL

and DH journals. The study additionally considered abstracts to partially address limitations

SoFAIR 25

D5.2 Use cases evaluation report Public

of the “per document” rule and to measure whether software appears in short-form metadata.
Finally, the findings were mapped onto SSH scholarly infrastructures. The study examined
how automated detection could enrich metadata, support knowledge-graph construction, and

contribute to discovery services such as GoTriple and the SSH Open Marketplace.

Results
The TLL analysis showed that digital transformation is present but unevenly distributed
across journals. Titles such as Iberica and IJES displayed relatively high mention rates, while

literary studies journals exhibited minimal traces of software use.

@ with mentions [l no mentions

600
586

200 463
369

285
200 243

journal

Peaks observed in 2009-2012 and 2020 indicate moments of methodological change,

including the pandemic-related rise in digital tools.

SoFAIR 26

D5.2 Use cases evaluation report Public

20
15

/\/ -

A DO DD D AN
DD D gy g o
DT ADT AR DT ADT AR AR AD

software mentions

wu

T=—1—
0

>

S D NI
BT AT AR DT A

NI o R S AR NN
DA AR A AP D7 AT AP

year

In contrast, DH journals showed consistently high levels of software mentions. Code4lib and
DHQ demonstrate strong upward trends, with significant growth after 2016. This reflects the
established methodological reliance on computational tools within DH communities and the

increasing institutionalisation of digital research practices.

== DHQ == Codedlib DHQ + Codedlib

60

40

20

0
A) & Q N W D) © A G2) S Q N VoA B Nl
O N O o > %% oy Y - - %2 o oY v v \ v W {V
S S S S S S S M S S M S S S S S S S

SoFAIR 27

D5.2 Use cases evaluation report Public

When comparing standardised mention rates, DH journals regularly reached 30-60%,
whereas TLL journals rarely exceeded 10—15%. This contrast illustrates structural differences
between the two fields and highlights the distinctive trajectories of digital transformation

across the humanities.
== DHQ == TLL
60,00%

40,00%

20,00%

0,00% ~

Abstracts proved largely unreliable for software-usage detection. TLL abstracts contained
almost no software references, and even DH abstracts presented only isolated mentions. This
finding 1s significant for infrastructures that rely heavily on abstracts for content indexing and

search.
Evaluation

The evaluation demonstrated that model performance varies significantly across domains. In
TLL journals, approximately 71% of detected mentions were true positives, reflecting the
clearer and less technical vocabulary typical of these fields. In DH journals, the true-positive
rate was roughly 50%, due to the greater complexity of DH terminology and the presence of

numerous tools, platforms, and technical expressions that challenge disambiguation.

SoFAIR 28

D5.2 Use cases evaluation report Public

81 (29,0%)

198 (71,0%)

TLL

DH

Limitations

The study is limited by its document-level approach, which does not account for the
frequency, location, or context of software mentions within texts. This approach sacrifices
granularity in favour of comparability and scale. Manual validation was necessary to
compensate for false positives, especially in DH journals, which limits the speed of
deployment in real infrastructures. The analysis does not systematically address false
negatives, as full manual annotation of the corpus would exceed project capacity. Only
English-language publications were examined, which restricts the generalisability of results
across multilingual SSH domains. Abstracts offer little usable information about software
usage, limiting the ability to rely on them for metadata enrichment. Despite these limitations,
the workflow demonstrates substantial value for scientometric and infrastructural

applications.

Conclusions

SoFAIR 29

D5.2 Use cases evaluation report Public

Readiness of the project’s outputs for research re-use in scientometrics, bibliometrics,
and cultural analytics. The outputs of this use case are suitable for reuse in several research
contexts. Scientometric studies may use the corpus, validated outputs, and diachronic trends
to analyse digital transformation across SSH domains. Bibliometric research can incorporate
software-mention annotations into metadata schemas, citation networks, and
knowledge-graph structures. Cultural analytics research gains a robust indicator of
methodological change and computational uptake within humanities publications.

The validated mentions also provide additional ground truth for improving machine-learning
models, particularly with regard to the disambiguation of technical terminology. Because the
dataset aligns with FAIR principles, it can be easily integrated with PIDs, authority files,

software archives, and SSH knowledge-graph initiatives.

Potential of the project output for automated population of EOSC services dedicated to
SSH. Automated software detection can significantly enhance EOSC-connected SSH
services. In GoTriple, detected software mentions could be integrated directly into the
indexing pipeline, enabling search by software name or PID and contributing to an emerging
SSH knowledge graph. Authors could validate detected mentions through existing
user-oriented features.

In the SSH Open Marketplace, detected software could be matched to existing tool entries or
used to create new ones. Publications containing mentions would serve as contextual
evidence, enriching entry metadata and improving findability and interoperability.

More broadly, linking detected software mentions with persistent identifiers such as SWHIDs
would allow EOSC services to populate and update their metadata automatically at scale.
Automated detection thus represents a realistic, scalable mechanism for improving metadata

quality, discoverability, and cross-service interoperability across SSH infrastructures.

SoFAIR 30

	Deliverable D5.2
	Use cases evaluation report
	
	Table of Contents
	Executive summary
	1.​Introduction
	2.​Use Cases
	2.1.​Demonstrator 1: Linking research studies to software in life sciences for Europe PMC
	Problem statement
	Methodology
	Pipeline
	Preprints
	Software Mention Extraction
	Conversion to Europe PMC format

	Results
	Filter Experiment
	Filter Performance Verification

	Comparison to Case Study in the Digital Humanities

	Limitations and Future Work
	Conclusion

	2.2.​Demonstrator 2: Validating extracted software mentions within an institutional repository (INRIA)
	Abbreviations
	Introduction
	Workflow
	Introduction
	Pipeline
	HAL Synchronization
	Document processing
	Load and Notification
	Validation from HAL

	Results
	Conclusions
	Limitations

	2.3.​Case study in the digital humanities (IBL-PAN)

