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Introduction

This document presents Deliverable 4.2 of the SOFAIR project, which focuses on the
identification and evaluation of software mentioned in scientific publications. The work builds on
resources developed by the CLARIN partner and extends previous efforts from the SoftCite
project. In particular, this deliverable concentrates on applying and improving software mention
recognition across two research domains that were central during the SoftCite project:
Economics and Biology.

Currently, the software-mention data used for training was primarily sourced from these two
fields. While this provided a strong foundation, it also introduced a disciplinary bias that limited
the software’s ability to generalize across other research domains. One of the goals of the
SoFAIR project is to address this limitation by incorporating documents from a broader range of
disciplines such as Digital Humanities (DH), Computer Science, Biomedical and Health
Informatics (BMA), and others. This expansion aims to increase the diversity of language use,
citation practices, and software usage patterns. By broadening the disciplinary coverage,
SoFAIR seeks to create a more balanced and representative dataset, ultimately leading to more
robust and accurate software mention detection across the research spectrum.

The primary objective of this deliverable is to assess how effectively software mentions can be
detected in articles using machine learning-based approaches. To this end, we first tested a
variety of DL and Large Language Model approaches using existing data. The project then
extended the existing SoftCite software mention recognizer, integrating new annotated data that
was generated by the CLARIN project partners. This enriched dataset served as the basis for
retraining and evaluation, aiming to improve the performance of the current models.

The current software mention extraction pipeline includes four Deep Learning (DL) models,
which are applied following GROBID-based preprocessing. Several enhancements were
introduced to improve the robustness and domain adaptability of the system:

e Introduction of a new “end-to-end” evaluation using the SoMeSci' dataset to provide an
unbiased evaluation;

e Introduction of a classification method for distinguishing between articles related and
unrelated to software;

e Evaluation of alternative DL architectures and parameter configurations to identify the
most effective model for software mention detection;

The outcome of this work is an updated extraction pipeline with retrained models capable of
more accurately identifying software mentions in Economics and Biology publications, and
increasingly in additional domains as disciplinary coverage expands. Evaluation was conducted
using standard metrics, with a focus on achieving a sufficient F1-score in the target domains to
justify deployment within the SoFAIR workflow in a semi-automated fashion.

' hitps://data.gesis.org/somesci/
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This deliverable represents a key step toward enabling more accurate and scalable software
metadata capture in scientific literature, contributing to the broader goals of the SoFAIR project.

Software mention extraction

Initial Model Experiments

In the early stages of the SoFAIR project, the annotation of a significant new multi-disciplinary
corpus had not been completed. We therefore undertook a range of experiments with existing
cross-disciplinary data. As the original SoftCite dataset is limited to two domains and the end
goal of the project is to develop models that are as domain agnostic as possible, we wanted to
conduct these early tests on data from multiple domains. For this study we employ a subset of
the SoMeSci dataset for our experiments. The SoMeSci dataset consists of 399,942 triples
representing 47,524 sentences from 1,367 documents. Overall the dataset contains high quality
annotations (IRR: k = .82) of 3,756 unique software mentions. A subset of 100 documents were
selected? and the full text documents were collected from CORE.

Prior to passing textual information to the model for processing, the full text was extracted in its
raw form and prepared for segmentation. Documents were split into individual sentences,
paragraphs or supplied in their entirety. This step allowed us to test the effect of the level of text
granularity given to the model. Three segmentation styles were tested: :

1. Sentence: Each sentence stands alone, without any overlap.

2. Paragraph: Groups of 20 sentences form each chunk, with the final two sentences in

one chunk overlapping with the first two of the subsequent chunk.

3. Complete: The entire text is treated as one segment, with no internal splitting.
Once the text had been prepared, two individual pipelines were prepared for testing with various
models. The simple approach processes the given text chunks without iterative refinement
whereas the iterative approach uses both keyword-based and semantic filtering across multiple
iterations to discover and verify new software mentions in the text.

Table 1 presents the results of our experiments with a range of different LLMs. Splitting the data
and processing at the sentence level produced the best results overall, with paragraph-level
splitting producing noticeably worse results across models.

2 To speed up the processing.



Model Pipe Split type Precision | Recall F-Score
Llama3:70b Simple Sentence 0,732642 @ 0,745163 0,738849
Gemma2:9b-instruct-fp16 Iterative Sentence 0,746382 0,667775 0,704894
Gemma2:9b-instruct-fp16 Simple Sentence 0,667067 0,694349 0,680435
Llama3:70b Iterative Sentence 0,67804 0,664426 0,671164
Sonnet Iterative Sentence 0,668872 0,670345 0,669608
Gemma2:27b-instruct-fp16 Iterative Sentence 0,698903 0,637581 0,666835
Gemma2:9b-instruct-fp16 Simple Paragraph 0,5775 0,686196 0,627173
Sonnet Simple Paragraph 0,567252 0,640409 0,601615
Llama3:8b Iterative Sentence 0,570989 0,603131 0,58662
0,586089
Llama3.1:70b-instruct-q4 RAG Sentence 0,589209 @ 0,583002
SciBERT - baseline N/A Paragraph 0,43299 0,414691 0,423643

Table 1: Top 10 performing models for software mention extraction

Our experiments with various models demonstrated that the best performing of these models
(Llama3:70b) provides comparable performance to the best previous state of the art models in
zero-shot set-up. This suggests that further improvements in performance can likely be attained
with the addition of pre-training or fine-tuning of the LLM or by providing additional in-context
examples (few-shot learning). Due to the generative nature of LLMs, we employed a
position-invariant evaluation strategy, which differs from the traditional sequence labeling
approach used in the Softcite experiments described in the following section. Specifically, we
extract only the software mention itself, regardless of its position in the text, and consider it
correct as long as it appears anywhere within the document.

In our experiments, it took in the range of 1-10 seconds (single-threaded) to process one
document with some of our best performing models, the average being five seconds depending
on document length. Assuming there are 10m new articles published every year, it would
require in the range of 115 - 1,150 computational days to process all of them. This clearly
demonstrates that, to enable adoption of these models in practice as part of open scholarly
infrastructures, scalability is a critical issue. This would need to be achieved by either (a)



tolerating a slightly lower performance at the cost of higher speeds or (b) by having the financial
resources to run these models in a distributed setup or (c) a combination of the above.

Improving the Software mention detection

The software mention detection application is built as a cascade of models, where each model
builds on the output of the previous one to extract structured information from text. At a high
level, the architecture begins with sequence labelling models that identify basic
software-related spans in the text, followed by specialised extractors that assign deeper
semantic roles or types to each identified mention.

Figure 1 illustrates this pipeline, where the first stage detects mentions of software and related
metadata, and the second stage focuses on characterising these mentions by their functional
type.

created
(classification)

used }O

Software
O (sequence labelling) | ©ther types >('Software entity (classification)

type: software shared
\ (classification)
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Figure 1: Software-mentions models cascade, with emphasis of the models software and
softwareType that are the object of this document. In grey the models that are discussed in this
deliverables. The figure shows how a software entity is built using the different models that are

applied in cascade.

Software-mentions workflow

The first sequence labelling model is designed to identify software-related entities (Figure 2)
in text. These include:

Software (primary information)
Version of the software
URL of the software, or the source code, for open source software, including Gitlab,
Github, bitbucket
e Creator, which include persons, entities, companies, institutions



These components are identified through a named entity recognition (NER) approach, with
the goal of finding both seen(known) and unseen (novel) software mentions in natural language
text.

creator
A
version url
entity
type
implicit language
component environment

Figure 2: Data model for the software entity

Once a software mention has been extracted, the system performs software type
classification, assigning a category that describes the role or context of the software. This
includes:

e Programming Language: The mention refers to a mention intended as a programming
language like Python or JavaScript.

e Component: The software is part of a larger environment or framework. For example, a
script, a plugin or library used within an environment (see following)

e Environment: a software intended as a suite grouping several features, such as Python,
R, Matlab, etc. Generally this is identified because the actual software is a script or a
program that require the environment to run

In the example above, “Python” can be understood either as a programming language or as an
environment, depending on the context in which it appears. For instance, the statement “We
used Python to develop our analysis” refers to Python as a programming language. In contrast,
“We use the NumPy library in Python” refers to Python as an environment, one that includes the
programming language but also encompasses its broader ecosystem of libraries and tools.

An important detail is that some software mentions are implicit, that is the software is not
directly named but inferred through context. For instance, in the sentence: "Statistical analysis
was performed with a script in R.”, the token “script” may implicitly refer to a program without
naming them individually. While implicit mentions are often ignored, they can contribute
positively in evaluating open science metrics, for example establishing whether a certain study
has reused other unnamed software.



The system uses contextual cues and learned patterns to handle these cases, although they are
more challenging than explicit mentions.

The statistical analysis was performed using a Python script using the
Python scikit-learn library (Inria, http://scikit-learn.org/) version 3.2 [45]
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Figure 3a: Software mentions extraction (sequence labelling) applied on a real case example®
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Figure 3b: Software mentions characterization (intent classification) applied on a real case
example
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Limitations

The model accuracy achieved in the SoFAIR project was influenced by the quantity and breadth
of the available annotations. While considerable effort went into producing the manual
annotations, during the course of the evaluation it was realised that the overall distribution could
have adhered more closely to the article discipline distribution, thus balancing the selection of
the SoFAIR dataset which may have provided a more focused dataset. As these systems rely
heavily on data-driven models, their ability to improve and generalize is inherently tied to the
richness and diversity of the annotated datasets they are trained on. Additionally, an
unanticipated round of verification was required to ensure annotation quality, which was not
originally foreseen in the project planning. As with many data-driven systems, performance is
closely tied to the size, diversity, and quality of the training data. The results presented below

® The creator of scikit-learn is, in reality, not limited to the Inria institute. This simplified approach
is used for illustration purposes only.



indicate that future improvements can be realised by expanding and refining the annotated
dataset to support broader generalization and stronger model performance.

Method

Data collection

The original SoftCite dataset consists of a total of 4,971 documents, which are divided into two
main subsets for machine learning purposes. The training set comprises 3,976 documents and
is used to develop and fine-tune models. The holdout set contains the remaining 995
documents and is reserved for evaluating model performance on unseen data. This division
supports rigorous experimentation and ensures that models generalize well beyond the training
data.

The dataset was reduced due to the need for further validation of the initial annotations provided
by CLARIN. These annotations were created without a feedback loop and, upon review, were
found to contain a substantial number of discrepancies when compared with the original Softcite
training data. Including them without correction could have introduced inconsistencies in the
training process, potentially affecting model performance.

SoFAIR dataset

The SoFAIR dataset comprises a total of 261 TEl-validated and deduplicated documents which
contains 3922 total annotations, structured to support robust model training and evaluation. Of
these, 214 documents (3191 annotations) are allocated to the training set, providing the primary
data for model development. The remaining 47 documents (731 annotations) form the holdout
set, used to assess model performance on unseen data. The split is based on field-level
calculations, where fractional values are rounded down using the floor function, ensuring that
even minimal counts are consistently treated as the lowest whole number. This careful
partitioning maintains dataset integrity while enabling reproducible and fair evaluation. The total
size of the complete SoFAIR dataset reflects a deliberate trade-off between annotation quality
and project resources. The annotation process was both time-intensive and domain-specific,
requiring expert input to ensure consistency.. In practice, the project team prioritised producing a
high-quality, fully TEI-compliant dataset, at the cost of a smaller overall size. The project team
also undertook an added verification phase to enhance reliability. As such, the dataset



represents a valuable and reliable resource for model training.
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Figure 4: Distribution (in percentage) of papers among the different domains in the SoFAIR
annotated corpus



Field Paper Count | 20% (Test) | 80% (Train)

Engineering 27 5 22
Materials Science 1 0 1

Physics 27 5 22
Chemistry 7 1 6
Cultural Studies 22 4 18
Language and Linguistics 26 5 21
Mathematics 31 6 25
Environmental Science 14 2 12
Neuroscience 2 0 2

Business Management and 1 0 1

Administration

Sociology and Political Science 22 4 18
Medicine 28 5 23
BioChem 15 3 12
Arts and Humanities 15 3 12
Comp Sci 23 4 19
Total 261 47 214

Table 2: distribution per fields for training and test data

Results

In the following section we present and discuss the results obtained by the experiments of
training and evaluation of the machine learning models using different architecture and
combination of data for training and evaluation.



Sequence labelling evaluation

As discussed before, the machine learning models experimented with, are the “software” and
“software type”.

To provide a better grasp of the respective size of each dataset or split, we provide as reference
the number of occurrences of the most frequent label in the data.

We designed four different experiments:

- Baseline: we trained and evaluated using the SoftCite dataset: the train (most frequent
annotation contains 4181 occurrences) and evaluation splits (989 occurrences), results
are in Table 3 for the “software” model and Table 6 for the “software type” model.

- SoftCite+All_SoFAIR: we trained using the SoftCite dataset train split and the full
SoFAIR dataset (in total, the most frequent annotation contains 6,642 occurrences) and
evaluated using the SoftCite evaluation split (989 occurrences), results are in Table 4 for
the “software” model and Table 8 for the “software type” model.

- Combined: we trained using the SoftCitetrain split and the SoFAIR train split (in total,
the most frequent annotation contains 7,239 occurrences) and evaluated using the
SoftCite evaluation split (989 occurrences) and the SoFAIR evaluation split (599
occurrences), results are in Table 5 for the “software” model and Table 7 for the
“software type” model.

- SoFAIR: we trained and evaluated using the SoFAIR dataset: the train (most frequent
annotation contains 2541 occurrences) and evaluation splits (599 occurrences), results
are in Table 6 for the “software” model and Table 10 for the “software type” model.

The evaluation reveals important trends when comparing the different experimental setups, with
the average F1-score serving as the primary metric for performance comparison.

Across the different configurations for the "software" entity recognition task (Tables 3,4,5 and 6),
the average F1-scores are relatively consistent. The highest F1-score (0.7542) is observed in
the SoftCite+All_SoFAIR model. This indicates that supplementing the SoftCite training data
with the entire SoFAIR dataset offers a modest but measurable improvement in model
performance. The improvement is especially relevant given the increased diversity in training
examples, which likely enhanced the model’s generalization on the SoftCite test set.However,
the Combined model, which is using slightly less training data than SoftCite+All_SoFAIR, does
not yield higher or similar performance (F1-score: 0.7289). This suggests that the SoFAIR
dataset may introduce inconsistencies or noise, offsetting the potential benefits of added data.
This result emphasizes that dataset compatibility and label consistency are crucial when
merging corpora.

The results for the "software type" classification task show greater variation in average
F1-scores across the different experiments. As with the "software" model, the
SoftCite+All_SoFAIR model configuration again yields the highest average F1-score (0.7739),
although only marginally higher than the SoftCite-only baseline (0.7726). This demonstrates that
the additional examples from SoFAIR contributed slightly to performance, likely by providing



more varied instances for rarer labels such as component and implicit. In contrast, the
Combined model shows a significant drop in performance (F1-score: 0.6310), suggesting that
evaluating on a merged test set introduces complexity that the model trained on combined data
cannot handle effectively. The most likely explanation is inconsistency between the annotation
styles or entity distributions across the two datasets, which could have led to confusion during
both training and evaluation. The SoFAIR-only model, with an average F1-score of just 0.3955
strongly indicates that the SoFAIR dataset alone lacks sufficient volume or clarity to support
effective learning for software type classification. Particularly, the lower support and higher
ambiguity of certain labels (e.g., implicit) likely contributed to the poor performance.

Entity Precision Recall F1-Score Support
creator 0.7932 0.7520 0.7721 250
software 0.8021 0.6067 0.6908 989
url 0.5116 0.5366 0.5238 41
version 0.8783 0.8163 0.8462 283
All (micro avg.) 0.8064 0.6660 0.7295 1563

Table 3: Evaluation scores of the baseline “software” model, trained and evaluated with the

SoftCite dataset’s train and test splits

Precision Recall F1-score Support
creator 0.8066 0.784 0.7951 250
software 0.7871 0.6542 0.7145 989
url 0.65 0.6341 0.642 41
version 0.8791 0.8481 0.8633 283
all (micro avg.) 0.8048 0.7095 0.7542 1563

Table 4: Evaluation scores of the SoftCite+All_SoFAIR “software” model, trained with SoftCite
train split and all SoFAIR dataset, and evaluated on SoftCite test split

Label Precision Recall F1-Score Support
creator 0.7861 0.6193 0.6928 1584
software 0.7818 0.7517 0.7665 286




url 0.8719 0.8575 0.8646 365
version 0.5577 0.5686 0.5631 51
All (micro avg.) 0.7952 0.6728 0.7289 2286

Table 5: Evaluation scores of the Combined “software” model trained with SoftCite and SoFAIR

dataset (train split) and evaluated with SoftCite and SoFAIR dataset (test split)

Label Precision Recall F1-Score Support
creator 0.4839 0.4167 0.4478 36
software 0.8043 0.4353 0.5649 595
url 0.3571 0.5 0.4167 10
version 0.8649 0.7805 0.8205 82
All (micro avg.) 0.7778 0.4744 0.5893 723

Table 6: Evaluation scores of the SoFAIR “software” model, trained and evaluated with the
SoFAIR dataset’s train and test splits

Label Precision Recall F1-Score Support
environment 0.7947 0.8207 0.8075 184
component 0.6 0.6 0.6 15
language 0.625 0.6667 0.6452 15
implicit 0.5 0.625 0.5556 8

All (micro avg.) 0.7576 0.7883 0.7726 222

Table 7: Evaluation scores of the baseline “software type” model trained and evaluated with the

SoftCite dataset

Label Precision Recall F1-Score Support
environment 0.8436 0.8207 0.832 184
component 0.4167 0.6667 0.5128 15
language 0.5714 0.5 0.5333 8
implicit 0.4643 0.8667 0.6047 15




All (micro avg.)

0.7479

0.8018

0.7739

222

Table 8: Evaluation scores of the SoftCite+All_SoFAIR “software type” model trained with
SoftCite train split and all SOFAIR dataset, and evaluated on SoftCite test split

Label Precision Recall F1-Score Support
environment 0.7743 0.7543 0.7642 232
component 0.5333 0.4267 0.4741 75
language 0.5357 0.5769 0.5556 26
implicit 0.5882 0.2326 0.3333 86

All (micro avg.) 0.6954 0.5776 0.631 419

Table 9: Evaluation scores of the Combined “software type” model trained with SoftCite and
SoFAIR dataset (train split) and evaluated with SoftCite and SoFAIR dataset (test split)

Label Precision Recall F1-Score Support
environment 0.4314 0.4583 0.4444 48
component 0.4364 0.4 0.4174 60
language 0.6429 0.5 0.5625 18
implicit 0.381 0.2254 0.2832 71

All (micro avg.) 0.4383 0.3604 0.3955 197

Table 10: Evaluation scores of the SoFAIR “software type” model trained using the SoFAIR
dataset, using the train/test splits described above

End to end evaluation

In this section we provide the end to end evaluation using the SoMeSci
(https://arxiv.org/pdf/2108.09070) dataset to assess, in a non-biased way, how the overall

application generalises on data outside its domain of training and evaluation.
Moreover, the end to end evaluation takes in account the full pipeline, and provides a single
metric that also comprehends possible software bugs and propagated errors during the

processing.

Since the SoMeSci dataset was created by an independent team, we adapted the evaluation to
compare only comparable entities, resulting in the four main labels: creator, software, url,

version.



https://arxiv.org/pdf/2108.09070

The results in Table 12 indicate an improvement in the model’s generalisation ability when
trained on both the SoftCite and SoFAIR datasets, as compared to the baseline model trained
solely on SoftCite (Table 11).

This is most evident in the overall F1-score, which increased from 0.6317 to 0.6796 (~+9%),
demonstrating the model's enhanced capacity to perform well on unseen data from the SoMeSci
corpus.

Individual label performance also reflects this trend. For example, the 'creator' and 'version'
labels showed around 4% F1-score gains (from 0.7263 to 0.7668 and 0.8122 to 0.8548,
respectively), indicating that exposure to a more diverse training set enabled the model to better
capture varied patterns. The 'software' class also showed a slight drop in precision, which
suggests that the model began identifying more instances as software, with a higher chance of
including incorrect predictions, nevertheless, showing overall improvements in both recall and
F1-scores.

The overall metrics point to an enhancement in the model’s ability to generalise across different
scientific corpora, reinforcing the importance of incorporating heterogeneous training data for
robust citation extraction.

Label Precision Recall F1-Score Support
creator 0.8734 0.6216 0.7263 111
software 0.7037 0.4940 0.5806 423
url 0.1667 0.08 0.1081 25
version 0.93 0.7209 0.8122 128
All (micro avg.) 0.7566 0.5422 0.6317 688

Table 11: Baseline models trained on SoftCite and evaluated on the SoMeSci

Label Precision Recall F1-Score Support
creator 0.9024 0.6667 0.7668 111
software 0.6745 0.6123 0.6419 423
url 0.1111 0.08 0.0930 25
version 0.9196 0.7984 0.8548 129
All (micro avg.) 0.7288 0.6366 0.6796 688

Table 12: Model trained on SoftCite and SoFAIR and evaluated on the SoMeSci




Processing throughput evaluation

In this section we report the measured throughput of the service in terms of document per
seconds, using the three different sources of input the data: PDF document, XML-TEI format, or
plain text (TXT). The experiment was performed by processing 100 documents on a machine
whose parameters are illustrated in Table 9.

The experiments were performed using several configurations:

- Concurrency: the number of documents sent in parallel by the client, we tested with 8,
16, and 24 concurrent documents for the single service, and with 8, 16, 24, and 32
concurrent documents for the 2x service

- Architecture: the Deep Learning architecture used for the software model (the most
heavily used model in the chain):

- BERT: is the standard BERT (Bidirectional EncodeR for Text) with a standard
activation layer

- BERT_CREF is the same architecture with a CRF activation layer, which offers
better results at the price of a smaller throughput

The experiment was performed using a single service and a cluster of two services coordinated
with a load balancer.

CPU model Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz

CPU sockets 2

CPU cores 24

CPU threads 48

CPU max MHz 3200.0000

RAM [GiB] 187.6

GPUs 2x NVIDIA GeForce RTX 2080 Ti

GPU memory [MiB] 2 x 11264 Mb

oS Ubuntu 20.04.6 LTS

Table 13: Overview of the service on which SoftCite was deployed

Table 13 presents the benchmarking results for processing 100 documents across various
configurations. Among the three formats, PDF processing is consistently the slowest, primarily
due to the additional overhead of PDF transformation and structuring.The TXT processing also
shows slower performance, while XML-TEI achieves the fastest processing times. These results



align with expectations. The processing of TXT documents was originally designed for testing
purposes only; however, in our experiments, we processed the full text of entire articles. These
texts likely exceed the 512-token limit of BERT-based models and therefore must be split into
individual sentences to avoid information loss, which significantly increases the number of
sequences that need to be processed. In contrast, the XML-TEI format already provides
structured content, with paragraphs presented as discrete text segments. As a result, even
though some long paragraphs are split into sentences, the total number of input sequences
remains lower than in the TXT format for equivalent documents. This enables longer average
input segments and leads to faster overall processing for XML-TEI.

From a throughput perspective, XML-TEI is consistently the most efficient format for large-scale
processing, achieving up to 0.6 documents/second on a single node and 1.14
documents/second on a dual-node configuration. This demonstrates the advantages of using a
pre-processed XML-TEI pipeline, where structural parsing (e.g., via Grobid) is performed in
advance, enabling downstream extractors like software-mention taggers to run more efficiently.
Nonetheless, PDF remains the reference format when enriched outputs are required, for
example, for directly annotating software mentions and their characterizations within the original
PDF document.

In terms of architecture, our results indicate that BERT consistently outperforms BERT+CREF in
processing speed across all formats and configurations. The addition of a Conditional Random
Field (CRF) layer introduces overhead due to the increased computational complexity in
sequence decoding. BERT+CRF may offer marginal gains [5] in tagging accuracy for some
tasks due to the Conditional Random Field layer as activation layer. Nevertheless, in our tasks,
the results are comparable (F1 of 73.06 using BERT vs 72.95 using BERT_CRF)

However, there is a general and significant performance trade-off with throughput boost ranging
from 20% to over 40% depending on the input format and concurrency level. Therefore, for
high-throughput or large-scale processing scenarios, vanilla BERT offers a more efficient and
scalable solution.

Nodes| Conc| Architec PDF XML-TEI TXT
doc/s s doc/s S doc/s ]
Single BERT| 0.28 352 0.59 169 0.38 261
8 |[BERT+CRF| 0.19 540 0.30 334 0.20 494
BERT| 0.30 338 0.58 171 0.37 267
16 |BERT+CRF| 0.17 598 0.30 338 0.20 490
BERT| 0.29 342 0.63 160 0.36 277
24 |BERT+CRF| 0.16 644 0.30 336 0.20 500
Multi (2) BERT| 0.53 187 1.11 90 0.66 152
8 |[BERT+CRF| 0.41 243 0.55 182 0.37 270




BERT| 0.54 185 1.14 88 0.67 150
16 |BERT+CRF| 0.39 256 0.54 185 0.38 266
BERT| 0.43 235 0.98 102 0.64 156
24 |BERT+CRF| 0.33 306 0.55 182 0.32 314

Table 14: Throughput results measured in document per seconds with several conditions:
concurrency, architecture and number of nodes. The reported values represent the average of 3
runs.



Software-related Documents classification

To optimize our software mentions extraction pipeline, we analyzed data from SoFAIR,
SoftCite, and SoMeSci. We found that only 38% of documents contained at least one software
annotation. This indicates that a significant portion of documents are being processed
unnecessarily, despite the computational cost, our pipeline is able to process only a fraction of a
document per second using single node setup.

To address this inefficiency, we developed a filtering model that identifies documents likely to
contain software mentions, enabling more targeted and scalable processing of large document
collections.

We trained a classification model, ModernBERT-base*, on the combined SoFAIR, SoftCite, and
SoMeSci datasets. ModernBERT was chosen because it is a modern implementation of the
BERT architecture providing several improvements, including throughput (by supporting flash
attention 2) and context length (with rotary positional embeddings - RoPE). Unfortunately, the
same architecture could not be used for the other models, due to incompatibility with the
libraries used for the current integration into the software-mention infrastructure.

The model distinguishes between documents with and without software mentions. Evaluation
results are shown in the table below. In our benchmark, the model yielded a throughput of 39
documents per second on a single NVIDIA GeForce RTX 4090 GPU.

Meaning that for a setup with one filter instance (=39 doc/s) and two Softcite instances
processing TEls (¢c=1.14 doc/s), the whole pipeline with filter selecting p=38% of documents will
be able to process 2.79 doc/s, which is a 145% speed up.

precision 0.8625
recall 0.9104
f1 0.8858
accuracy 0.9268

Table 15: ModernBERT-base results on a test set from the collection of SoFAIR, SoftCite, and
SoMeSci data.

The model is publicly available at
https://huggingface.co/SoFairOA/sofair-modernBERT-base-filter, and we also provide a

* https:/huggingface.co/blog/modernbert


https://huggingface.co/SoFairOA/sofair-modernBERT-base-filter
https://huggingface.co/blog/modernbert

lightweight command-line tool (https://github.com/SoFairOA/filter) for easy integration into
existing workflows.

Software disambiguation

Introduction

Disambiguation plays a crucial role in accurately interpreting software mentions within scientific
articles. In the Softcite dataset, the data were analyzed not in isolation but collectively within the
same article. This approach allows for a more nuanced understanding of the author's intent,
whether the software is being used, created, or shared, by considering the broader context of all
references throughout the text. Grouping mentions at the article level and providing a
normalized form (a plain text form) enhances the accuracy of intent classification, as individual
sentences may only provide partial or ambiguous signals [2].

Grouping mentions across documents enhances the accuracy of intent classification, as isolated
mentions within a single sentence or article often provide only partial or ambiguous signals. By
aggregating software mentions across articles, we can uncover broader trends that are usually
hidden when analyzing documents in isolation. However, the wide variation in how software is
referenced is shaped by discipline, writing style, and author preferences which presents a
significant challenge. These diverse expressions require sophisticated disambiguation
strategies to ensure consistent identification and interpretation of software mentions across a
heterogeneous corpus.

Approach to disambiguation

A software's normalized form refers to a standardized version of its name. This normalization
ensures consistency by removing variations such as abbreviations, case differences, or
misspellings, and mapping these variations to a canonical form. The goal is to support accurate
identification and citation of software across documents.

Despite implementing normalization, we observed that inconsistencies in software naming still
persisted across our corpus. To address this, we introduced a multi-step disambiguation
process, beginning with fuzzy matching.

Fuzzy matching

The first level of disambiguation uses the Python library Fuzzy, which relies on Levenshtein
distance, a metric that measures the minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into another.


https://github.com/SoFairOA/filter

For example, strings like "Python”, "python", and "Py-thon" would each receive a similarity score
above 90 (out of 100), indicating a high degree of similarity. In our corpus, we apply fuzzy
matching against each software’s normalized form to identify similar variants. Mentions with a
similarity score above 90 are flagged for verification.

However, even with this automated step, the number of software mentions requiring manual
review quickly became unmanageable, even within our relatively small corpus. Additionally, fully
automating the verification and correction process proved unreliable, as software names are
inherently dynamic: they may evolve over time, change in format, or vary by version and
context.

Author-Guided Verification

To increase the accuracy of the automatic pipeline, we incorporated an author-in-the-loop
approach. After each deposit, a pipeline processes the associated document, prepare an
automatic aggregation, and sends a notification to the submitting author, inviting them to review
the extracted software mentions. This human-in-the-loop step ensures we capture the correct
canonical form of each software and, where possible, the corresponding repository or URL.

With this verified data, we can enrich our database by linking software to research teams,
authors, or relevant external resources. Over time, as the database grows, it will improve our
ability to disambiguate software automatically, reducing the need for manual intervention. It also
enables us to pre-fill verification requests, further easing the burden on authors.

This process creates a virtuous cycle: as the database becomes more robust, it supports better
disambiguation, leading to higher-quality data, improved software visibility, and a more
accessible, findable scholarly record.

Towards semantic embeddings and contrastive learning

Looking forward, high-quality, author-verified annotations open the door to more sophisticated
methods of disambiguation such as semantic comparison and contrastive learning. Rather than
relying solely on surface-level string similarity, these approaches learn deeper representations
of software mentions in context,capturing the semantics of how software is described and used.
However, these models require a reliable ground truth to function effectively. A small but
accurate, curated corpus that is built with the author-in-the-loop process is essential as a
foundation for training and validating such models. Only with this solid base of trustworthy
annotations can we confidently scale to semantic-level disambiguation, enabling models to
distinguish between truly distinct software entities even when they share similar or ambiguous
names.



Data availability

All the data and code including all the trained models, the created and reused datasets, and the
scripts for evaluations, are available on huggingface at https://huggingface.co/SoFAIROA. The
software-mentions code is available on GitHub at https://github.com/softcite/software-mentions.

Conclusions and perspectives

This deliverable presents significant advancements in the detection, disambiguation, and
enrichment of software mentions in scientific literature, forming a cornerstone of the SoFAIR
project’s mission to enhance software transparency and traceability in open science.

Zero-shot

We did experiments with various LLMs in a zero-shot setup. Even though we got promising
results (up to .74 F1), we identified that scalability is an issue for open scholarly infrastructures.
We thus focused on smaller models using supervised fine-tuning.

SoFAIR impact in software mention extraction:

The Software-mention application used for mining the SoftCite dataset, was considered a solid
base for improving the software mention extraction especially considering disciplines outside the
initial scope of SoftCite, limited to economics and biology. SoFAIR aims to cover disciplines
included, but not limited to, materials science, digital humanities, chemistry, business and
administration.

Evaluation across multiple experimental settings demonstrated that supplementing the SoftCite
dataset with SoFAIR data (SoftCite+All_SoFAIR) yields the best performance, with F1-scores
reaching 0.7542 for software recognition and 0.7739 for software type classification. However,
inconsistencies in annotation across datasets negatively affected the performance of models
trained on combined corpora. The SoFAIR-only model showed limited effectiveness due to
smaller training size and higher ambiguity, especially in the software type task.

Nevertheless, the results of the end to end evaluation using the independent SoMeSci dataset,
showed that the combined model maintained strong generalisation performances. Despite the
SoFAIR dataset being significantly smaller than the SoftCite dataset, its inclusion during training
led to noticeable improvements in model performance and generalisation (Tables 11 and 12).
The overall micro-averaged F1-score improved from 0.6317 to 0.6796 and highlights a reliable
level of performance on the diverse and unseen SoMeSci dataset. Notably, key categories such
as 'creator' and 'version' saw substantial gains in F1-score, while 'software' improved in recall at
the expense of a slight drop in precision, indicating the model was able to identify more relevant
instances, albeit with some trade-offs. These results suggest that even limited but
complementary and diverse training data like SoFAIR can meaningfully enhance a model’s
ability to generalise across domains.

Throughput and Scalability:
Processing performance evaluations revealed XML-TEI as the most efficient input format,
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enabling faster throughput than PDF or plain text. The system demonstrated solid scalability
under different concurrency levels and hardware configurations, with a processing rate of up to
1.14 documents/sec for XML-TEI using multi-node deployment and the standard BERT
architecture. The BERT architecture resulted to be constantly 20-40% faster than the slightly
more accurate BERT_CREF architecture.

Document Classification for Pre-filtering:

To increase system efficiency, we developed a classification model (ModernBERT-base) to
pre-filter documents likely to contain software mentions. This model achieved an F1-score of
0.8859 and processed 39 documents/second, substantially reducing computational overhead,
and enabling scalable processing for large archives. We estimated that the filter provides 145%
speed up for the whole pipeline.

Software Disambiguation and Enrichment:

A multi-tier disambiguation pipeline was implemented, beginning with fuzzy matching and
extending to an author-in-the-loop verification system. This process enables high-precision
enrichment by linking software mentions to canonical names, URLs, and repositories. Verified
data also lays the groundwork for future semantic disambiguation via contrastive learning
methods. Author feedback is central to refining the dataset and improving disambiguation
accuracy over time.

Integration and Outlook:

Work is underway to integrate the software mention pipeline into open infrastructures such as
HAL and CORE, using COAR Notify to engage authors in the validation loop. This creates a
sustainable ecosystem for capturing, verifying, and reusing software metadata across research
domains. As the author-verified database grows, it will support more accurate, scalable, and
semantically rich disambiguation and classification models. All the detailed integration,
workflows and pipelines with other partners of the project including CORE and Inria are
described in detail in the general documentation, deliverable 3.2

https://sofairoa.github.io/documentation/.

In summary, the work conducted in this deliverable strengthens the SoFAIR infrastructure for
software metadata extraction and lays the foundation for future enhancements in machine
learning-based disambiguation, human-in-the-loop validation, and integration with research data
infrastructures. The tools, data, and models produced are openly available and contribute
directly to promoting FAIR software practices in scholarly communication.
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