
Starting environment for human
annotation of software mentions

Deliverable information

Deliverable number and name D4.1
Due date M3
Actual delivery date 01.04.24
Work Package WP4
Lead Partner for deliverable Inria
Authors Patrice Lopez, Samuel Scalbert, Alain Montei,

Laurent Romary
Reviewers
Approved by
Dissemination level Public
Version 0.2

Document revision history
Issue Date Version Author Comments
19/02/2024 0.1 First draft

12/03/2023 0.1 Cezary
Rosiński
(Reviewer)

Abbreviations

Overview...3
Introduction..3
1 Creation of a collection of documents to be annotated..4

1.1 Nature of the documents... 4
1.2 Harvesting documents... 4
1.3 Selecting documents... 4

2 Preparation of pre-annotated documents.. 5
2.1 Pre-annotated software mentions..5
2.2 Pre-classified mention context characterization.. 6

3 Producing the annotations.. 6
3.1 Workflow.. 6
3.2 Annotation guidelines.. 7
3.3 Format of the annotations..8
3.4 Document validation.. 9

4 Consistency check for annotations..9
5 Re-training and evaluating models...9

Training and Evaluation... 10
6 Github SoFAIR (To be confirm by Petr and David).. 10

7 KISH application..11
Références..11

Executive summary

Overview
The annotation process can be streamlined as follows

Introduction
This deliverable presents the available environment for producing manual annotations of
software mentions usable by the Softcite Software mention recognizer. It describes the
requirements related to the documents to be annotated, to the manual annotations to be
produced, and to the expected quality and formats. It also describes the different tools available
to support the production of the annotations.

1 Creation of a collection of documents to be
annotated

1.1 Nature of the documents
The documents considered here are scholarly articles, such as those published in journals,
conference proceedings, book chapters and technical reports. Other types of documents (e.g.
books, theses) are not supported.

The documents have to be published with an explicit license, compatible with unconstrained
re-distribution and derivation. In practice, the document files have to be published under one of
the following licenses: Public Domain, CC-0 or CC-BY. Documents under other licenses or
unknown Open Access licenses have to be excluded from the annotation corpus, because it
would limit our ability to publish the full training data openly and thus would hinder its reuse by
other users.

1.2 Harvesting documents
The selection of the documents is typically specified by a list of criteria corresponding to the
scientific/technical domains, publication years, document types, languages and venues.
Bibliographical databases such as CORE could be used to select a set of document candidates
in the form of a list of DOIs. Attention must be given to produced unbiased candidate lists, which
might involve stratified sampling according to different metadata facets.

From a list of DOIs, biblio-glutton-harvester
(https://github.com/kermitt2/biblio_glutton_harvester) can harvest metadata automatically and
full texts (PDF, XML or latex sources) available in Open Access, with indication of the license of
the full text files. License information is crucial for selecting documents for annotations. The tool
has a high success rate of Open Access full text download, thanks to various web scraping
techniques.

See in particular Harvesting from a list of DOI in the biblio-glutton-harvester documentation.

1.3 Selecting documents
The tool biblio-glutton-harvester produces a JSON catalog file (map.json) indicating the different
resources in Open Access that have been successfully harvested. This file includes the Open
Access license associated with the successfully downloaded resource, when such license
information has been explicitly retrieved from Unpaywall, in combination with metadata from
PubMed Central or arXiv.

https://github.com/kermitt2/biblio_glutton_harvester
https://github.com/kermitt2/biblio_glutton_harvester?tab=readme-ov-file#harvesting-from-a-list-of-doi
https://unpaywall.org
https://www.ncbi.nlm.nih.gov/pmc/
https://arxiv.org

Although the harvester can access XML and latex source versions of the publications, we
suggest to focus only on PDF documents as the full text reference version for annotations. PDF
is the general format available for Open Access papers (in particular for pre-prints), while XML
or LaTeX versions are by far less frequent. Using PDF documents will make the training data
more robust for machine learning models, also making them relevant for any kind of input,
including XML and clean texts. Conversely, using XML as the only input format will make the
processing of noisy PDF documents less reliable.

We can define additional selection criteria to ensure the usability of a given document for the
annotation process. The following criteria shall be considered to select valid documents:

- successfully downloaded Open Access full text,
- full text file available under Public Domain, CC-0 or CC-BY license by filtering using the

catalog JSON file,
- PDF version is harvested,
- TEI can be successfully produced from the PDF using Grobid (this ensures that the PDF

contains usable text layers),
- the language of the publication is valid (typically, the ISO 639 language code is provided

by Grobid), note that the currently available training data is limited to English,
- selected papers should be of reasonable length, for example between 3 and 15 pages,

to facilitate human annotations.

Actions:
● The Softcite dataset consists of 4,971 full-texts in English (available in Open Access under

CC-BY license), half in Life Sciences and half in Economics, for a total of around 46 million
tokens. For SoFAIR, in order to improve performance across domains, the corpus would
need a few hundred documents to be included in the corpus, covering domains such as
Humanities, Mathematics, Physics, Chemistry. In addition, the new documents should be
recent, because the Softcite dataset contains mainly articles published more than 10 years
ago.

● Who : Open University
● What : Create corpus of pdf with licence CC-BY and metadata for Softcite
● When : beginning of april

2 Preparation of pre-annotated documents

2.1 Pre-annotated software mentions
From the selected full text PDF documents, the next step is to generate XML documents in the
expected training data format, with pre-annotated software mentions following the current
models.

This step can be realized via a utility command line of the Softcite Software Mention
Recognizer, available under https://github.com/softcite/software-mentions. See the
documentation for the installation of the tool and using this command line:

> ./gradlew create_training -Pin=/documents/in/ -Pout=/documents/out/

The pre-annotated documents will be available in XML TEI from the input PDF documents. The
PDFs are parsed and automatically structured by Grobid. The existing Softcore models are then
used on the relevant text structures to pre-annotate software mentions, which should help
annotators when examining the documents.

2.2 Pre-classified mention context characterization
A complementary annotation task is to define the functional role of the software in the research
work described in a publication, based on the software mention context. Given an XML corpus
of software mention annotations, it is possible to extract the software mention contexts
automatically with pre-classification information, for further manual annotation relative to the
context characterization.

The utility command to perform this data preparation is available in the repository
https://github.com/softcite/software-mentions, more precisely via this script. The script will
extract content from annotated TEI XML documents, segment paragraph contexts into sentence
contexts, and then pre-classify the context using the current Softcite classifier. The result is a
JSON file with the mentioned contexts and a pre-classification.

Alternatively, it is also possible to simply start from a CSV file with sentences to be
pre-classified. The same JSON file will be produced.

Action: Inria applies Software mention tool on corpus

3 Producing the annotations

3.1 Workflow
The workflow used for annotating the documents as the gold standard for the Softcite dataset
(https://zenodo.org/records/7995565, 4971 full articles) is as follows:

- Double parallel annotation of an article by 2 different annotators
- Identification of disagreements
- Reconciliation by a third “expert” annotator

This process ensures that all the content of the documents and all the annotations have been
seen and validated by at least 2 persons. This workflow was justified by the sparsity of software
mentions in scholar articles. As it is very easy to overlook a mention, a double-blind annotation

https://github.com/softcite/software-mentions
https://github.com/softcite/software-mentions?tab=readme-ov-file#generation-of-training-data
https://github.com/softcite/software-mentions
https://github.com/softcite/software-mentions/blob/master/scripts/generateSoftwareUseTrainingData.py
https://zenodo.org/records/7995565

appears as a robust solution, maintaining at the same time the quality of the positive examples
(sentences and paragraphs with at least one annotation) and the negative ones useful for
learning what is not software.

Preliminary training of the annotators using the existing annotated Softcite corpus is strongly
recommended. Completion of the training period could be simply based on a certain volume of
annotated texts with examination of disagreement against the existing annotated corpus, or
when the annotations produced by the new annotators have reached a satisfactory accuracy
against the existing annotated corpus.

3.2 Annotation guidelines
Annotation guidelines are the central part of the annotation process. They capture at the same
time the scope of the annotations and the decision criteria to produce the annotations.
Annotators must read the guidelines before annotating, and come back regularly to them as
ambiguities and questions appear. When a new ambiguous case appears, annotators should
extend the guidelines to cover this new case, thus capitalizing annotation experience and
methods.

Annotation guidelines are also important to define the expected behavior of the Machine
Learning models trained on the annotated corpus, so to specify the annotation task. ML models
aim at reproducing the decisions defined in the guidelines, and the annotation guidelines could
be seen as the annotation service description/contract.

Current annotation guidelines for software mentions are available at
https://github.com/softcite/softcite_dataset_v2/blob/master/annotation_guidelines_tei_xml.md

Current annotation guidelines for the characterization of software mention contexts are available
at
https://github.com/kermitt2/kish/blob/master/resources/data/markdown/guidelines-softcite-conte
xt-classification.md

Following the guidelines is necessary to ensure that the produced annotations will be usable as
additional training data. As the volume of existing training data is already very large and
corresponds to several years of work, additional training data have to align with the existing
ones to avoid degrading the machine learning models by inconsistent labeling.

More generally, the most common annotator mistakes are related to misalignment and
annotation scheme clarity. These annotation guidelines address the two issues by supporting
alignment of annotators with rules and example cases consolidated by the annotation of the
Softcite corpus, which took place over several years.

With respect to the problem of deviating from the existing guidelines, we raise the following
points:

https://github.com/softcite/softcite_dataset_v2/blob/master/annotation_guidelines_tei_xml.md
https://github.com/kermitt2/kish/blob/master/resources/data/markdown/guidelines-softcite-context-classification.md
https://github.com/kermitt2/kish/blob/master/resources/data/markdown/guidelines-softcite-context-classification.md

1) If a particular attribute is not annotated in the new training data, the model will learn
false negative cases conflicting with the older training data, making the whole attribute
unreliable.

2) If a particular additional attribute not present in the original guidelines is annotated, it will
be necessary to re-annotate this attribute in the existing 4971 documents to maintain
some consistency, or to train a fully separate model just to this attribute. Introducing a
new model supposes a significant change of the software mention recognizer and could
only be considered if the development resources and skills are available.

3.3 Format of the annotations
Annotations are currently produced in XML following the TEI (Text Encoding Initiative)
guidelines. This format can then be directly used to train the existing machine learning models.
See the annotation guidelines and the existing Softcite corpus for illustrations.

Annotations can be produced using text or XML editors. It is usually considered that XML
editors such as Oxygen could help the productivity of annotation. Annotators have to be familiar
with XML, which might require additional preliminary learning and training.
We call software mention the reference to a software in a text, including the
software names and every related component appearing together with the software
name (e.g. software version, publisher, etc.). Software names and its software
components are identified with TEI inline mark-up <rs>, for referencing string.

Extra XML attributes on mark-up are used to further refine the types of the identified
entities. Relations between entities are encoded with attributes @xml:id and attribute
@corresp as pointer;

Example of a Software mention with name, version and URL:

3.4 Document validation
Annotated documents can be checked using standard XML tools. XML well-formed should be
supported by the user editor or can be easily tested using command lines such as xmllint.
This part is related to task 4.2

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-rs.html

4 Consistency check for annotations
The XML annotated documents can normally be directly used for training models. In practice,
these documents are supposed to be used in combination with the existing training data. Such a
combination depends however on the strict respect of the guidelines and format. Deviating from
the guidelines might degrade the existing models, either because non-consistent annotations
have been produced (the model having contradictory decisions to be made, thus not able to
learn stable inferences) or because some information will be skipped due to unexpected format.

In addition, the sparsity of software mentions makes overlooking mentions common, even with
careful readers, and fatigue is unavoidable.

A tool is available at https://github.com/softcite/software-mentions to analyze the consistency of
annotations over a complete corpus. See here for using this consistency script.

This tool analyzes the existing annotations and checks in the non-annotated contexts for the
occurrence of seen mention without labeling or under a different label type. It allows one to
identify automatically suspicious annotation contexts, which are then to be reviewed, because of
inconsistencies between different documents or inside the same document. The tools appeared
to be very useful to spot missing annotations and inconsistent annotation decisions for similar
software mentions.

5 Re-training and evaluating models
Softcite Software Mention Recognizer (https://github.com/softcite/software-mentions) includes
command lines to train and evaluate ML models, following a variety of ML architectures. It is
possible to retrain models from scratch or incrementally. Evaluations can be done based on a
fixed set (holdout set approach), random evaluation set, or via n-fold cross evaluation.

Training and Evaluation
Details on training and evaluating ML models are available here. See the configuration
documentation to select the machine learning architecture to be used and its training
parameters.

We identified that a very important aspect of the recognition of software mentions is negative
sampling, i.e. the selection of negative contexts (text without any software mention annotation)
to be used with the annotated contexts to help the models to learn what is not software. The
reason is the very high sparsity of software mentions in scholar articles: using too many positive
annotations would result in a model that sees software everywhere. On the contrary, using too
many negative contexts will result in a model performing with a very low recall.

https://github.com/softcite/software-mentions
https://github.com/softcite/software-mentions?tab=readme-ov-file#analysis-of-training-data-consistency
https://github.com/softcite/software-mentions
https://github.com/softcite/software-mentions/tree/master?tab=readme-ov-file#commands-for-sequence-labeling-training-and-evaluation
https://github.com/softcite/software-mentions/tree/master?tab=readme-ov-file#configuration
https://github.com/softcite/software-mentions/tree/master?tab=readme-ov-file#configuration

A pool of positive and negative examples is normally provided to the trainer as two TEI files
derived from the full training data, see here. Different strategies can then be exploited to mix the
positive and negative examples in an optimal way, maximizing the F1 score on a holdout set of
full articles with a real distribution of mentions.

Depending on the outcome of the evaluation, it is often necessary to review the newly produced
annotations or to produce more annotations. We recommend to evaluate new manual
annotations by re-training and re-evaluating ML models very regularly, using frequent iterations.
Given that manual annotation is very costly, this will make it possible to adjust the annotation
work, quality and effort early, and limit the risk of producing low quality annotations for ML
applications.

Action : from month 4 to 6 IBL-PAN give first result of the annotation progress to Inria to test the
corresponding results in the model

6 SoFAIR Github

We propose to create in SoFAIR Github (https://github.com/SoFairOA) an environment
dedicated to WP4 where each partner can put and find data and results of WP4.
We propose to have six folders like:

documents/metadata
documents/pdf
documents/tei-pre-annotated
documents/tei-validated
guidelines/
benchmarks/

In Github we can use issues to discuss annotation issues and pull requests for proposal
solutions on tei-validated.

Action: create folders in GitHub repository for SoFAIR

7 KISH application
KISH application aims at facilitating annotation for people who are not comfortable with XML
and TEI. https://github.com/kermitt2/kish
The result is in JSON and may be transformed in XML TEI
Currently KISH is not easy to set up and deploy, because the loading/export administration
functions are done by Python command line. Using KISH requires a person with Python skills. In
addition, the server to run the application has to be deployed and KISH installed.

https://github.com/softcite/software-mentions/tree/master?tab=readme-ov-file#accuracy-of-the-sequence-labeling-task
https://github.com/SoFairOA
https://github.com/kermitt2/kish

Références

[1] Patrice Lopez, Caifan Du, Johanna Cohoon, Karthik Ram, and James Howison. 2021. Mining
Software Entities in Scientific Literature: Document-level NER for an Extremely Imbalance
and Large-scale Task. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (CIKM ’21), November 1–5, 2021, QLD,
Australia. https://doi.org/10.1145/3459637.3481936

[2] Aricia Bassinet, Laetitia Bracco, Anne L'Hôte, Eric Jeangirard, Patrice Lopez, et Laurent
Romary. 2023. Large-scale Machine-Learning analysis of scientific PDF for monitoring the
production and the openness of research data and software in France. 2023.
https://hal.science/hal-04121339

[3] Du C, Cohoon J, Lopez P, Howison J. Softcite dataset: A dataset of software mentions in
biomedical and economic research publications. J Assoc Inf Sci Technol. 2021; 72:
870–884. https://doi.org/10.1002/asi.24454

[4] Du, C., Cohoon, J., Lopez, P., & Howison, J. 2022. Understanding progress in software
citation: A study of software citation in the CORD-19 corpus. PeerJ Computer Science, 8,
e1022. https://doi.org/10.7717/peerj-cs.1022

[5] David Schindler, Felix Bensmann, Stefan Dietze, and Frank Krüger. 2021. SoMeSci- A 5 Star
Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management (CIKM '21). Association for Computing Machinery, New York, NY, USA,
4574–4583. https://doi.org/10.1145/3459637.3482017

https://doi.org/10.1145/3459637.3481936
https://hal.science/hal-04121339
https://doi.org/10.7717/peerj-cs.1022
https://doi.org/10.1145/3459637.3482017

